Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS One ; 16(4): e0250319, 2021.
Article in English | MEDLINE | ID: covidwho-1833525

ABSTRACT

Projections of the stage of the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pandemic and local, regional and national public health policies to limit coronavirus spread as well as "reopen" cities and states, are best informed by serum neutralizing antibody titers measured by reproducible, high throughput, and statically credible antibody (Ab) assays. To date, a myriad of Ab tests, both available and FDA authorized for emergency, has led to confusion rather than insight per se. The present study reports the results of a rapid, point-in-time 1,000-person cohort study using serial blood donors in the New York City metropolitan area (NYC) using multiple serological tests, including enzyme-linked immunosorbent assays (ELISAs) and high throughput serological assays (HTSAs). These were then tested and associated with assays for neutralizing Ab (NAb). Of the 1,000 NYC blood donor samples in late June and early July 2020, 12.1% and 10.9% were seropositive using the Ortho Total Ig and the Abbott IgG HTSA assays, respectively. These serological assays correlated with neutralization activity specific to SARS-CoV-2. The data reported herein suggest that seroconversion in this population occurred in approximately 1 in 8 blood donors from the beginning of the pandemic in NYC (considered March 1, 2020). These findings deviate with an earlier seroprevalence study in NYC showing 13.7% positivity. Collectively however, these data demonstrate that a low number of individuals have serologic evidence of infection during this "first wave" and suggest that the notion of "herd immunity" at rates of ~60% or higher are not near. Furthermore, the data presented herein show that the nature of the Ab-based immunity is not invariably associated with the development of NAb. While the blood donor population may not mimic precisely the NYC population as a whole, rapid assessment of seroprevalence in this cohort and serial reassessment could aid public health decision making.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Blood Donors , COVID-19/immunology , Cohort Studies , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , New York City/epidemiology , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Seroconversion/physiology , Seroepidemiologic Studies , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology
2.
Commun Biol ; 4(1): 1317, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528032

ABSTRACT

As Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to spread, characterization of its antibody epitopes, emerging strains, related coronaviruses, and even the human proteome in naturally infected patients can guide the development of effective vaccines and therapies. Since traditional epitope identification tools are dependent upon pre-defined peptide sequences, they are not readily adaptable to diverse viral proteomes. The Serum Epitope Repertoire Analysis (SERA) platform leverages a high diversity random bacterial display library to identify proteome-independent epitope binding specificities which are then analyzed in the context of organisms of interest. When evaluating immune response in the context of SARS-CoV-2, we identify dominant epitope regions and motifs which demonstrate potential to classify mild from severe disease and relate to neutralization activity. We highlight SARS-CoV-2 epitopes that are cross-reactive with other coronaviruses and demonstrate decreased epitope signal for mutant SARS-CoV-2 strains. Collectively, the evolution of SARS-CoV-2 mutants towards reduced antibody response highlight the importance of data-driven development of the vaccines and therapies to treat COVID-19.


Subject(s)
Epitope Mapping , SARS-CoV-2 , Antibodies, Viral , COVID-19 , Cross Reactions , Humans
3.
BMC Infect Dis ; 21(1): 871, 2021 Aug 25.
Article in English | MEDLINE | ID: covidwho-1477269

ABSTRACT

BACKGROUND: Epidemic projections and public health policies addressing Coronavirus disease (COVID)-19 have been implemented without data reporting on the seroconversion of the population since scalable antibody testing has only recently become available. METHODS: We measured the percentage of severe acute respiratory syndrome- Coronavirus-2 (SARS-CoV-2) seropositive individuals from 2008 blood donors drawn in the state of Rhode Island (RI). We utilized multiple antibody testing platforms, including lateral flow immunoassays (LFAs), enzyme-linked immunosorbent assays (ELISAs) and high throughput serological assays (HTSAs). To estimate seroprevalence, we utilized the Bayesian statistical method to adjust for sensitivity and specificity of the commercial tests used. RESULTS: We report than an estimated seropositive rate of RI blood donors of approximately 0.6% existed in April-May of 2020. Daily new case rates peaked in RI in late April 2020. We found HTSAs and LFAs were positively correlated with ELISA assays to detect antibodies specific to SARS-CoV-2 in blood donors. CONCLUSIONS: These data imply that seroconversion, and thus infection, is likely not widespread within this population. We conclude that IgG LFAs and HTSAs are suitable to conduct seroprevalence assays in random populations. More studies will be needed using validated serological tests to improve the precision and report the kinetic progression of seroprevalence estimates.


Subject(s)
Antibodies, Viral/blood , Blood Donors , COVID-19/epidemiology , SARS-CoV-2 , Bayes Theorem , Humans , Rhode Island/epidemiology , Seroepidemiologic Studies
4.
Transfusion ; 61(8): 2374-2383, 2021 08.
Article in English | MEDLINE | ID: covidwho-1295143

ABSTRACT

BACKGROUND: Convalescent plasma (CP) is an important initial treatment in pandemics and the New York (NY) metropolitan area is likely to remain a hotspot for collection and distribution of such units. This study reports characteristics of coronavirus disease 19 CP (CCP) donors and their donations to the New York Blood Center (NYBC). STUDY DESIGN AND METHODS: All CCP data from our first day of collection on March 26th through July 7th, 2020 are included in this retrospective analysis. Donor and donation data were extracted from NYBC electronic databases. SARS-CoV-2 antibody testing was initially performed by the NY State Department of Health, and later by NYBC using Ortho and Abbott platforms. RESULTS: CCP donor age and ABO distributions were consistent with reported lower COVID-19 susceptibility in O blood types. CCP versus whole blood donors had similar on-site deferrals, but higher post-donation deferral rates. CCP versus routine plasmapheresis donations had higher vasovagal reactions but similar product rejection rates. Changes in antibody (Ab) test platforms resulted in significant changes in the percent of donors regarded as antibody positive. Donor correlates with higher anti-spike total Ig S/CO ratios were Hispanic ethnicity, overweight body mass index, and longer symptom duration; and with higher anti-nucleocapsid IgG S/CO ratios were male gender, older age, Hispanic ethnicity, and fewer days between symptom onset and first donation. DISCUSSION: We identify donor characteristics not previously reported to correlate with Ab titer. Our analysis should assist with donor outreach strategies, blood center operating logistics, and recruitment of high titer donors.


Subject(s)
Blood Donors , COVID-19/therapy , ABO Blood-Group System/blood , ABO Blood-Group System/immunology , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , New York/epidemiology , Retrospective Studies , SARS-CoV-2/immunology , COVID-19 Serotherapy
6.
J Clin Microbiol ; 58(12)2020 11 18.
Article in English | MEDLINE | ID: covidwho-941658

ABSTRACT

The development of neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following infection or vaccination is likely to be critical for the development of sufficient population immunity to drive cessation of the coronavirus disease of 2019 (COVID-19) pandemic. A large number of serologic tests, platforms, and methodologies are being employed to determine seroprevalence in populations to select convalescent plasma samples for therapeutic trials and to guide policies about reopening. However, the tests have substantial variations in sensitivity and specificity, and their ability to quantitatively predict levels of NAbs is unknown. We collected 370 unique donors enrolled in the New York Blood Center Convalescent Plasma Program between April and May of 2020. We measured levels of antibodies in convalescent plasma samples using commercially available SARS-CoV-2 detection tests and in-house enzyme-linked immunosorbent assays (ELISAs) and correlated serological measurements with NAb activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have various degrees of accuracy in predicting NAb activity. We found that the Ortho anti-SARS-CoV-2 total Ig and IgG high-throughput serological assays (HTSAs) and the Abbott SARS-CoV-2 IgG assay quantify levels of antibodies that strongly correlate with the results of NAb assays and are consistent with gold standard ELISA results. These findings provide immediate clinical relevance to serology results that can be equated to NAb activity and could serve as a valuable roadmap to guide the choice and interpretation of serological tests for SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biological Variation, Population , COVID-19/epidemiology , COVID-19/immunology , SARS-CoV-2/immunology , Serologic Tests , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/virology , Cell Line , Enzyme-Linked Immunosorbent Assay , High-Throughput Screening Assays , Humans , Immunophenotyping , Leukocytes, Mononuclear , Population Surveillance , Sensitivity and Specificity , Seroepidemiologic Studies , Serogroup , Serologic Tests/methods , United States/epidemiology
7.
Elife ; 92020 10 28.
Article in English | MEDLINE | ID: covidwho-895692

ABSTRACT

Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor-binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.


The new coronavirus, SARS-CoV-2, which causes the disease COVID-19, has had a serious worldwide impact on human health. The virus was virtually unknown at the beginning of 2020. Since then, intense research efforts have resulted in sequencing the coronavirus genome, identifying the structures of its proteins, and creating a wide range of tools to search for effective vaccines and therapies. Antibodies, which are immune molecules produced by the body that target specific segments of viral proteins can neutralize virus particles and trigger the immune system to kill cells infected with the virus. Several technologies are currently under development to exploit antibodies, including vaccines, blood plasma from patients who were previously infected, manufactured antibodies and more. The spike proteins on the surface of SARS-CoV-2 are considered to be prime antibody targets as they are accessible and have an essential role in allowing the virus to attach to and infect host cells. Antibodies bind to spike proteins and some can block the virus' ability to infect new cells. But some viruses, such as HIV and influenza, are able to mutate their equivalent of the spike protein to evade antibodies. It is unknown whether SARS-CoV-2 is able to efficiently evolve to evade antibodies in the same way. Weisblum, Schmidt et al. addressed this question using an artificial system that mimics natural infection in human populations. Human cells grown in the laboratory were infected with a hybrid virus created by modifying an innocuous animal virus to contain the SARS-CoV-2 spike protein, and treated with either manufactured antibodies or antibodies present in the blood of recovered COVID-19 patients. In this situation, only viruses that had mutated in a way that allowed them to escape the antibodies were able to survive. Several of the virus mutants that emerged had evolved spike proteins in which the segments targeted by the antibodies had changed, allowing these mutant viruses to remain undetected. An analysis of more than 50,000 real-life SARS-CoV-2 genomes isolated from patient samples further showed that most of these virus mutations were already circulating, albeit at very low levels in the infected human populations. These results show that SARS-CoV-2 can mutate its spike proteins to evade antibodies, and that these mutations are already present in some virus mutants circulating in the human population. This suggests that any vaccines that are deployed on a large scale should be designed to activate the strongest possible immune response against more than one target region on the spike protein. Additionally, antibody-based therapies that use two antibodies in combination should prevent the rise of viruses that are resistant to the antibodies and maintain the long-term effectiveness of vaccines and therapies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/therapy , Mutation , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Base Sequence , COVID-19/virology , Epitopes/genetics , Epitopes/immunology , Genes, Reporter , Humans , Immunization, Passive , Neutralization Tests , Protein Domains , Protein Isoforms/immunology , Reassortant Viruses/immunology , Receptors, Virus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Selection, Genetic , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vesiculovirus/genetics , Virus Replication , COVID-19 Serotherapy
9.
BMC Res Notes ; 13(1): 372, 2020 Aug 06.
Article in English | MEDLINE | ID: covidwho-696522

ABSTRACT

OBJECTIVE: COVID19 has caused a global and ongoing pandemic. The need for population seroconversion data is apparent to monitor and respond to the pandemic. Using a lateral flow assay (LFA) testing platform, the seropositivity in 63 New York Blood Center (NYBC) Convelescent Plasma (CP) donor samples were evaluated for the presence of COVID19 specific IgG and IgM. RESULTS: CP donors showed diverse antibody result. Convalescent donor plasma contains SARS-CoV-2 specific antibodies. Weak antibody bands may identify low titer CP donors. LFA tests can identify antibody positive individuals that have recovered from COVID19. Confirming suspected cases using antibody detection could help inform the patient and the community as to the relative risk to future exposure and a better understanding of disease exposure.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , Betacoronavirus/immunology , Blood Donors , Clinical Laboratory Techniques/methods , Convalescence , Coronavirus Infections/diagnosis , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Nucleocapsid Proteins/immunology , Pandemics , Pneumonia, Viral/diagnosis , Point-of-Care Testing , Spike Glycoprotein, Coronavirus/immunology , Antibody Specificity , COVID-19 , COVID-19 Testing , Coronavirus Infections/therapy , Coronavirus Nucleocapsid Proteins , Gold Colloid , Humans , Immunization, Passive , Phosphoproteins , Plasma , Protein Domains , Recombinant Proteins/immunology , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity , Seroconversion , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL